Multi-Level Heterogeneous Modeling of the Advanced Amphibious Assault Vehicle (AAAV)

Posted by on Oct 24, 2009 in Contracts, Distributed Heterogeneous Simulation, Eric A. Walters, Power Systems, SBIR Phase I, SBIR Phase II, Terrestrial Vehicles | 0 comments

Type of Award: STTR Phase I and Phase II with Funded Enhancement

Subcontractors: Purdue

Contract Numbers: M67004-99-C-0044 and M67854-00-C-3047

Agency: U.S. Marine Corp

Status: Completed

Periods: 7/13/99 to 6/13/00 and 5/23/00 to 8/31/03

Principal Investigator: E. A. Walters

Abstract: The primary objective of the Phase I effort was to determine the feasibility of a heterogeneous modeling environment for the Advanced Amphibious Assault Vehicle (AAAV). This has been clearly established. In particular, a method of connecting any number of independent time-domain simulations has been developed and used to demonstrate a detailed heterogeneous computer simulation of the salient components of the AAAV electric power system. The primary objective of the Phase II effort is to establish a flexible and powerful distributed modeling and analysis environment for the AAAV electrical power system that can be used to evaluate design alternatives, predict performance characteristics during normal and abnormal (e.g. battle damage) conditions, and serve as a simulation testbed for future design modifications. This facility will reduce engineering and development costs, identify optimum design choices, and avoid unanticipated problems during development and fielding of the AAAV, thereby increasing affordability over its life cycle. Specific tasks to be performed include: the development and validation of a detailed heterogeneous end-to-end simulation of the AAAV electric power system, the development of a multi-level visualization and control interface, the investigation of high-speed computational clusters to improve the computational speed, and the investigation of multi- and parallel rate integration algorithms.