Cross-Platform Distributed Heterogeneous Simulation of a More Electric Aircraft Power System

Posted by on Oct 21, 2009 in Aircraft, Charles Eric Lucas, Distributed Heterogeneous Simulation, Eric A. Walters, Oleg Wasynczuk, Power Systems, Publications | 0 comments

C. E. Lucas, E. A. Walters, O. Wasynczuk, PC Krause and Associates, Inc; Peter T. Lamm, U. S. Air Force Research Laboratory To support research and analysis requirements in the development of future power systems, a flexible and efficient means of predicting the dynamic performance of large-scale multi-disciplinary systems prior to hardware trials is crucial. With the development of Distributed Heterogeneous Simulation (DHS), the technology now exists to enable this type of investigation. Previously, DHS was shown to allow the interconnection of component simulations running on a single- or distributed-computer network and developed using any combination of a variety of commercial-off-the-shelf software packages for the Microsoft Windows operating system. However, for large-scale systems, all subsystem models may not be developed in software packages operating under Windows thereby requiring a translation of such models in order to incorporate them within a system simulation. In this paper, the DHS technique is expanded to support the UNIX operating system, thus, allowing subsystem models developed and executed on either UNIX- or Windows-based computers to be interconnected to form a dynamic system simulation. For the purpose of demonstration, a more-electric fighter (MEF) power system, such as that found on the Joint Strike Fighter (JSF), has been selected as a study system. This system is comprised of ten component models each developed using MATLAB/Simulink, EASY5, or ACSL. Utilizing the system simulation, studies have been performed to illustrate the dynamic interactions between the subsystems when simulated on a heterogeneous computer network containing both Windows- and Unix-based machines. SPIE Defense and Security Symposium Proceedings, March 2005. Contact information:...

Read More

Variable Communication Rates in a Distributed Simulation

Posted by on Oct 21, 2009 in Distributed Heterogeneous Simulation, Eric A. Walters, Jason R. Wells, Maher Hasan, Oleg Wasynczuk, Power Systems, Publications | 0 comments

E. A. Walters, M. Hasan, C. E. Lucas, PC Krause and Associates, Inc; O. Wasynczuk, Purdue University; P. T. Lamm, U.S. Air Force Research Laboratory As a result of the increased capabilities (surveillance, directed energy weapons, fuel efficiency, etc.) for both military and civilian aircraft, new architectures are being proposed for integrated power and propulsion systems. To analyze these new designs, large-scale multi-disciplinary (aerodynamic, electrical, mechanical, hydraulic, thermal, etc.) system simulations are required. To this end, distributed simulation has become a vital tool by enabling subsystem models developed using different commercial-off-the-shelf simulation programs to be interconnected to form an end-to-end system simulation that can execute orders of magnitude faster than comparatable single-model (non-distributed) implementations. Although distributed simulation has been successfully applied to numerous military aircraft systems, engineering expertise is required when selecting the fixed-rate communication intervals between subsystems to guarantee that the dynamics are adequately portrayed for all modes of operation. This engineering judgment has typically led to conservative selections wherein needless communications are performed, thereby hindering the overall simulation speed. In this paper, a new variable-communication-interval algorithm is established wherein the communication intervals are selected based upon user-specified error criteria. With this algorithm, the communication intervals for each model-to-model interface are selected independently and determined based upon the dynamics of the exchanged variables. The advantages of this technique include: reduced engineering time required to establish a distributed simulation by simply allowing error criteria to be specified, an increased assurance of system simulation accuracy, and increased simulation speeds by eliminating unnecessary communications. This technique is applied to an example system wherein it is shown that a five-fold increase in simulation speed can be achieved with the same accuracy when compared to the traditional fixed-rate approach, or a six-fold increase in accuracy can be achieved for the same simulation speed. 3rd International Energy Conversion Engineering Conference, August 15-18, 2005, San Francisco,...

Read More

An Algorithm for the Optimal Allocation of Subsystem Simulations within a Distributed Heterogeneous Simulation

Posted by on Oct 21, 2009 in Aircraft, Distributed Heterogeneous Simulation, Eric A. Walters, Oleg Wasynczuk, Power Systems, Publications | 0 comments

C. E. Lucas, E. A. Walters, PC Krause and Associates, Inc; O. Wasynczuk, Purdue University; Peter T. Lamm, U. S. Air Force Research Laboratory An allocation algorithm for optimally assigning the various subsystem simulations, within a distributed heterogeneous simulation, to a specific set of computational resources has been developed. This algorithm uses a cost function that approximates the simulation execution time for each of the subsystems based upon the model complexity and the performance parameters of the available computer resources. The cost function is then evaluated to determine the optimal allocation that ensures the overall simulation execution time is minimized. In this paper, the allocation algorithm is applied to a large-scale power-electronic-based aircraft electrical power system. This study system is comprised of ten component simulations that together are modeled by 85 state variables and include 74 switching devices. Both optimal and sub-optimal allocations are considered and the predicted simulation run times are verified experimentally. SAE Transactions Journal of Aerospace, July 2005, pp. 1871-1878 and 2004 SAE Power Systems Conference, November 2-4, 2004, Reno, NV, Paper #...

Read More

Distributed Heterogeneous Simulation of a Hybrid-Electric Vehicle Drive System Using the Simplorer Software Product

Posted by on Oct 9, 2009 in Charles Eric Lucas, Distributed Heterogeneous Simulation, Ning Wu, Power Systems, Publications, Terrestrial Vehicles | 0 comments

N. Wu, C. E. Lucas, Curtis Rands, I. E. Simpson, PC Krause and Associates, Inc; Dionysios C. Aliprantis, Purdue University; M. Abul Masrur; U.S. Army RDECOM-TARDEC To support research and analysis requirements in the development of future hybrid-electric drive systems, a flexible and efficient means of predicting the dynamic performance of large-scale multi-disciplinary systems prior to hardware trials is crucial. With the development of Distributed Heterogeneous Simulation (DHS), the technology now exists to enable this type of investigation. Previously, DHS was shown to allow the interconnection of component simulations running on a single computer or networked computers and developed using any combination of a variety of commercial-off-the-shelf software packages. The US Army is interested in using the Simplorer software product from Ansoft Corporation to model various subsystems that are incorporated with such vehicle system simulations. In this paper, the DHS technique is expanded to support the Simplorer software package; thus, allowing subsystem models developed using this tool to be interconnected to form a dynamic system simulation. A representative hybrid-electric vehicle has been selected as a study system and includes propulsion, generation, weapon, and payload subsystems. Models of the components/subsystems that comprise the power system have each been developed in MATLAB/Simulink or Simplorer. Utilizing the system simulation, studies have been performed to illustrate the dynamic interactions between the subsystems when simulated on a computer network containing Windows based personal computers. 2006 SAE Power Systems Conference, November 7–9, 2006, New Orleans, LA. Paper #...

Read More

Improvements in the Distributed Heterogeneous Simulation of Aircraft Electric Power Systems

Posted by on Oct 8, 2009 in Aircraft, Benjamin P. Loop, Charles Eric Lucas, Distributed Heterogeneous Simulation, Eric A. Walters, Power Systems, Publications | 0 comments

B. P. Loop, C. E. Lucas, E. A. Walters, M. Hasan, PC Krause and Associates, Inc; S. Field , N. Kumbar,  Naval Air  Systems Command Two recent enhancements to Distributed Heterogeneous Simulation (DHS) are variable communication rates and higher-order predictors.  Variable communication automatically controls the communication interval between any two subsystems in an attempt to achieve a desired accuracy during transient periods and maximize speed during steady-state periods.  Higher-order predictors can better estimate the values of exchanged variables between data exchange instances, which can improve accuracy and possibly require fewer exchanges.  A comparison between a single-computer simulation of an aircraft electric power system and an equivalent three-computer DHS show that the variable communication technique enables more accuracy and higher speed distributed simulations than fixed-step communication.  In addition, higher-order predictors are shown to increase accuracy in some cases. 2006 SAE Power Systems Conference, November 7–9, 2006, New Orleans, LA. Paper...

Read More