C. E. Lucas, E. A. Walters, J. Jatskevich, O. Wasynczuk, PC Krause and Associates, Inc; P. T. Lamm U.S. Air Force Research Laboratory; T. E. Neeves, Naval Surface Warfare Center A new paradigm for simulating large-scale dynamical systems is described and applied to an integrated naval power system. This approach enables the overall system simulation to be formed as an interconnection of interdependent dynamic simulations, each representing a specific electrical, mechanical, hydraulic, and/or thermal component/subsystem. Each simulation may be developed independently using possibly different commercial off-the-shelf simulation programs thereby allowing the most suitable language or tool to be used based on the design/analysis needs. The proposed simulation paradigm is applied to an advanced naval electric power system that includes a zonal dc electric distribution system and an integrated electric generation and propulsion system. The composite system simulation is implemented on a three-computer network of personal computers by interconnecting simulations of the constituent subsystems. It is shown that significant improvements in computational speed are achieved using this approach. WSEAS/IASME Transactions, issue 3, vol. 1, July 2004, pp....
Read MoreSynchronous Generator-Rectifier Average-Value Modeling for a Naval Electric Power System
Juri Jatskevich, University of British Columbia; E. A. Walters, C. E. Lucas, PC Krause and Associates, Inc. A prototype Integrated Power System that is representative of advanced power systems of future warships is considered. This system is comprised of an AC Generation and Propulsion System as well as a DC Zonal Electrical Distribution System. Obtaining accurate average-value models of individual subsystems that can be used for extracting the input/output impedance as well as for increasing the simulation speed of the respective models. In this paper, a parametric approach for developing a dynamic average-value model of a generator-rectifier subsystem is presented. The method initially requires a detailed switched model from which the rectifier/dc-link dynamics are captured using numerical averaging; however, the resulting model is continuous and computationally efficient. The developed average-value model is compared against measured and detailed simulation results and is shown to be very accurate in both the time- and frequency-domains. A 74-fold increase in simulation speed is achieved. WSEAS/IASME Transactions, issue 3, vol. 1, July 2004, pp....
Read More