Automated Evolutionary Design of a Hybrid-Electric Vehicle Power System Using Distributed Heterogeneous Optimization

Posted by on Oct 9, 2009 in Charles Eric Lucas, Distributed Heterogeneous Optimization, Ning Wu, Oleg Wasynczuk, Power Systems, Publications, Terrestrial Vehicles | 0 comments

Dionysios C. Aliprantis, O. Wasynczuk, Purdue University; N. Wu and C. E. Lucas, PC Krause and Associates, Inc; M. Abul Masrur, U.S. Army RDECOM-TARDEC

The optimal design of hybrid-electric vehicle power systems poses a challenge to the system analyst, who is presented with a host of parameters to fine-tune, along with stringent performance criteria and multiple design objectives to meet. Herein, a methodology is presented to transform such a design task into a constrained multi-objective optimization problem, which is solved using a distributed evolutionary algorithm. A power system model representative of a series hybrid-electric vehicle is considered as a paradigm to support the illustration of the proposed methodology, with particular emphasis on the power system’s time-domain performance.

2006 SAE Power Systems Conference, November 7–9, 2006, New Orleans, LA. Paper # 2006-01-3045