An Efficient Multi-Rate Simulation Technique for Power Electronic-Based Systems

Posted by on Oct 21, 2009 in Charles Eric Lucas, Electronics, Eric A. Walters, Ning Wu, Oleg Wasynczuk, Power Systems, Publications | 0 comments

S. D. Pekarek, O. Wasynczuk, Purdue University; E. A. Walters, J. V. Jatskevich, C. E. Lucas, N. Wu, PC Krause and Associate, Inc; P. T. Lamm, U.S. Air Force Research Laboratory

A novel multi-rate method of simulating power-electronic-based systems containing a wide range of time scales is presented. In this method, any suitable integration algorithm, with fixed or variable time-step, can be applied to the fast and/or slow subsystems. The subsystems exchange coupling variables at a communication interval that can be fixed or varied dynamically depending upon the state of the system variables. The proposed multi-rate method is applied to two example power systems that include power-electronic subsystems. Increases in simulation speed of 183-281% over established single-rate integration algorithms are demonstrated.

IEEE Trans­actions on Power Systems, vol. 19, no. 1, February 2004, pp. 399-409.