Multi-Fidelity Models for Design and Analysis of Directed Energy Weapon Power Systems

Posted by on Oct 21, 2009 in Aircraft, Benjamin P. Loop, Directed Energy Weapon, Eric A. Walters, Jason R. Wells, Oleg Wasynczuk, Power Systems, Publications | 0 comments

E. Walters, PC Krause and Associates, Inc; S. Pekarek, O. Wasynczuk, Purdue University;  A. Koenig, J. Wells, B. P. Loop, PC Krause and Associates, Inc; P. Lamm, U. S. Air Force Research Laboratory

Historically, the design of aircraft electrical systems has been divided into separate mechanical (turbine engine) and electrical subsystems, wherein the coupled dynamics have been ignored until hardware integration. However, future loads such as Directed Energy Weapons (DEW), a coupled multi-physics design and analysis capability is required to evaluate system feasibility and establish optimal components in the context of a system-level architecture. In this paper, modeling and simulation techniques that provide a backbone for such design and analysis is set forth. Simulation techniques include a distributed heterogeneous simulation toolbox for interconnecting dynamic component models created using different simulation packages and/or operating systems. Modeling tools include a partitioned finite element technique and a field reconstruction technique that dramatically reduces the computational effort required to perform fields-based simulation of electric machines. Herein, the multi-physics tools are demonstrated for a multi-MW DEW system. The impact of the DEW load on the electrical, mechanical, and energy storage are evaluated under both transient and steady-state conditions and an attempt is made to search for architectures/ designs that minimize weight subject to maintaining stable system performance.

9th Annual Directed Energy Symposium, October 30-November 2, 2006, Albuquerque, NM. Contact Information: walters@pcka.com