Type of Awards: SBIR Phase I with IEDC and Phase II Contract Numbers: FA9451-07-M-0082 and FA9451-08-C-0058 Agency: U.S. Air Force Research Laboratory Status: On Going Periods: 3/14/07 to 3/03/08 and 3/12/08 to 3/02/11 Principal Investigator: B. P. Loop Abstract: The primary objective of the proposed work is to develop a directed energy system analysis and design environment. This analysis and design environment will be based upon Distributed Heterogeneous Simulation (DHS) and Distributed Heterogeneous Optimization (DHO) technology. DHS allows the interconnection of models developed in different simulation languages running on different computing platforms to form an integrated system simulation. DHO is a distributed multi-objective optimization environment tailored for system design. The Phase II effort will focus on creating directed energy component model library, developing a system model translator, and incorporating high-power microwave device models into a simulation of the electric power system. The capabilities of the proposed design environment will be demonstrated, and effort toward the transition of the tool to government and industry will be carried out. PCKA will collaborate with Lockheed Martin and the Directed Energy Directorate of the Air Force Research Laboratory to identify directed energy applications of...
Read MoreTools for Evaluation of Directed Energy Weapon Power Systems
E. A. Walters, PC Krause and Associates, Inc; S. D. Pekarek, O. Wasynczuk, Purdue University; A. C. Koenig, PC Krause and Associates, Inc; P. T. Lamm, U.S. Air Force Research Laboratory Historically, the simulations of aircraft power systems have been divided into separate mechanical (turbine engine) and electrical subsystems, wherein the coupled dynamics have been neglected. However, for future high power concepts such as Directed Energy Weapons, a coupled multi-physics design and analysis capability is required to evaluate system feasibility and establish an optimal architecture. In this paper, such a simulation environment is set forth. The environment contains tools for creating rapid component/system-level simulations. These include a distributed heterogeneous simulation toolbox for interconnecting dynamic component models created using different simulation packages and/or operating systems, as well as a partitioned finite element technique that dramatically reduces computational effort. Herein, the multi-physics tools are demonstrated for a multi-MW gyrotron system. The impact of the gyrotron load on the electrical, mechanical, and energy storage are evaluated under both transient and steady-state conditions and an attempt is made to search for architectures/ designs that minimize weight subject to maintaining stable system performance. 8th Annual Directed Energy Symposium, November 14-18, 2005, Lihue,...
Read MoreMulti-Fidelity Models for Design and Analysis of Directed Energy Weapon Power Systems
E. Walters, PC Krause and Associates, Inc; S. Pekarek, O. Wasynczuk, Purdue University; A. Koenig, J. Wells, B. P. Loop, PC Krause and Associates, Inc; P. Lamm, U. S. Air Force Research Laboratory Historically, the design of aircraft electrical systems has been divided into separate mechanical (turbine engine) and electrical subsystems, wherein the coupled dynamics have been ignored until hardware integration. However, future loads such as Directed Energy Weapons (DEW), a coupled multi-physics design and analysis capability is required to evaluate system feasibility and establish optimal components in the context of a system-level architecture. In this paper, modeling and simulation techniques that provide a backbone for such design and analysis is set forth. Simulation techniques include a distributed heterogeneous simulation toolbox for interconnecting dynamic component models created using different simulation packages and/or operating systems. Modeling tools include a partitioned finite element technique and a field reconstruction technique that dramatically reduces the computational effort required to perform fields-based simulation of electric machines. Herein, the multi-physics tools are demonstrated for a multi-MW DEW system. The impact of the DEW load on the electrical, mechanical, and energy storage are evaluated under both transient and steady-state conditions and an attempt is made to search for architectures/ designs that minimize weight subject to maintaining stable system performance. 9th Annual Directed Energy Symposium, October 30-November 2, 2006, Albuquerque, NM. Contact Information:...
Read MoreGCU for Megawatt Class Directed Energy Weapons Pulse Generators
Lev Sorkin, Innovative Power Solutions, LLC; E. A. Walters, PC Krause and Associates, Inc. Directed Energy weapon (DEW) systems are being developed for both ground and airborne applications. Typically, they consist of microwave or laser powered guns. Both the microwave application and the diode based laser applications require significant amount of power. This power ranges from several hundred kilowatts (kW) for microwave applications to Megawatts (MW) for laser applications. The laser application requires that the full power be available for short duration, typically 5 seconds, which could be repeated several times with short pauses in between. The control of a generator, which delivers Megawatt of the intermittent power greatly differs from the of normal steady state generator control. It poses significant challenges. Application of power (and for this matter its removal) is a transient phenomenon that takes time and its effects ripple through the whole system. In the case at hand, the large applied power, which is required for a short duration, can have a more significant effect on the system. Furthermore, it is imperative that the full power will be available for the required duration with no degradation in quality on both ends (application and removal). There are four entities that interact affecting the performance of the...
Read More